Advanced ML Hyperparameter Tuning: Best Method?
Bayesian vs Particle Swarm Optimization ๐
(for more ML tutorials and resources like this, subscribe to my newsletter: https://lnkd.in/gddXakxh)
1๏ธโฃ ๐๐ฎ๐๐ฒ๐๐ถ๐ฎ๐ป ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐๐ข)
๐๐ณ๐ณ๐ถ๐ฐ๐ถ๐ฒ๐ป๐ ๐ณ๐ผ๐ฟ ๐๐ผ๐๐๐น๐ ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป๐
BO works well when each hyperparameter evaluation (e.g., training a model) is computationally expensive.
๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ถ๐ป ๐๐ผ๐บ๐ฝ๐ฎ๐ฐ๐ ๐ฆ๐ฝ๐ฎ๐ฐ๐ฒ๐
Performs best in low-dimensional hyperparameter spaces (typically fewer than 20 dimensions).
It uses past evaluations to sample promising points, making it sample-efficient (see the gif).
โ ๐๐ฒ๐๐ ๐ณ๐ผ๐ฟ:
โณ Cases with limited computational budgets.
โณ Cases when model evaluation is time-consuming.
โณ Tuning a small to moderate number of parameters.
2๏ธโฃ ๐ฃ๐ฎ๐ฟ๐๐ถ๐ฐ๐น๐ฒ ๐ฆ๐๐ฎ๐ฟ๐บ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ฃ๐ฆ๐ข)
๐๐ฎ๐ป๐ฑ๐น๐ฒ๐ ๐๐ถ๐ด๐ต ๐๐ถ๐บ๐ฒ๐ป๐๐ถ๐ผ๐ป๐ฎ๐น๐ถ๐๐
PSO suites for high-dimensional hyperparameter spaces, exploring diverse regions effectively.
๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น๐ถ๐๐ฎ๐ฏ๐น๐ฒ
Easily scales across multiple computational nodes, making it efficient for large-scale optimization tasks.
โ ๐๐ฒ๐๐ ๐ณ๐ผ๐ฟ:
โณ High-dimensional hyperparameter spaces
โณ Scenarios with abundant computational resources allowing for parallel evaluations.
โณ Problems where the evaluation cost is less critical compared to exploration breadth.
๐๐ผ๐ ๐๐ผ ๐๐ต๐ผ๐ผ๐๐ฒ ๐๐ต๐ฒ ๐ฅ๐ถ๐ด๐ต๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ
-> ๐จ๐๐ฒ ๐๐ฎ๐๐ฒ๐๐ถ๐ฎ๐ป ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป when each evaluation is costly and you're dealing with a manageable number of hyperparameters.
-> ๐จ๐๐ฒ ๐ฃ๐ฎ๐ฟ๐๐ถ๐ฐ๐น๐ฒ ๐ฆ๐๐ฎ๐ฟ๐บ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป if you have many hyperparameters to tune and the capacity for parallelized evaluations.
โป๏ธ Share with network to show your interest in advanced ML practices!
P.S. Did you try PSO in your work?
Bayesian vs Particle Swarm Optimization ๐
(for more ML tutorials and resources like this, subscribe to my newsletter: https://lnkd.in/gddXakxh)
1๏ธโฃ ๐๐ฎ๐๐ฒ๐๐ถ๐ฎ๐ป ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐๐ข)
๐๐ณ๐ณ๐ถ๐ฐ๐ถ๐ฒ๐ป๐ ๐ณ๐ผ๐ฟ ๐๐ผ๐๐๐น๐ ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป๐
BO works well when each hyperparameter evaluation (e.g., training a model) is computationally expensive.
๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ถ๐ป ๐๐ผ๐บ๐ฝ๐ฎ๐ฐ๐ ๐ฆ๐ฝ๐ฎ๐ฐ๐ฒ๐
Performs best in low-dimensional hyperparameter spaces (typically fewer than 20 dimensions).
It uses past evaluations to sample promising points, making it sample-efficient (see the gif).
โ ๐๐ฒ๐๐ ๐ณ๐ผ๐ฟ:
โณ Cases with limited computational budgets.
โณ Cases when model evaluation is time-consuming.
โณ Tuning a small to moderate number of parameters.
2๏ธโฃ ๐ฃ๐ฎ๐ฟ๐๐ถ๐ฐ๐น๐ฒ ๐ฆ๐๐ฎ๐ฟ๐บ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ฃ๐ฆ๐ข)
๐๐ฎ๐ป๐ฑ๐น๐ฒ๐ ๐๐ถ๐ด๐ต ๐๐ถ๐บ๐ฒ๐ป๐๐ถ๐ผ๐ป๐ฎ๐น๐ถ๐๐
PSO suites for high-dimensional hyperparameter spaces, exploring diverse regions effectively.
๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น๐ถ๐๐ฎ๐ฏ๐น๐ฒ
Easily scales across multiple computational nodes, making it efficient for large-scale optimization tasks.
โ ๐๐ฒ๐๐ ๐ณ๐ผ๐ฟ:
โณ High-dimensional hyperparameter spaces
โณ Scenarios with abundant computational resources allowing for parallel evaluations.
โณ Problems where the evaluation cost is less critical compared to exploration breadth.
๐๐ผ๐ ๐๐ผ ๐๐ต๐ผ๐ผ๐๐ฒ ๐๐ต๐ฒ ๐ฅ๐ถ๐ด๐ต๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ
-> ๐จ๐๐ฒ ๐๐ฎ๐๐ฒ๐๐ถ๐ฎ๐ป ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป when each evaluation is costly and you're dealing with a manageable number of hyperparameters.
-> ๐จ๐๐ฒ ๐ฃ๐ฎ๐ฟ๐๐ถ๐ฐ๐น๐ฒ ๐ฆ๐๐ฎ๐ฟ๐บ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป if you have many hyperparameters to tune and the capacity for parallelized evaluations.
โป๏ธ Share with network to show your interest in advanced ML practices!
P.S. Did you try PSO in your work?