Claim 35 Post Templates from the 7 best LinkedIn Influencers

Get Free Post Templates
Rami Krispin

Rami Krispin

These are the best posts from Rami Krispin.

4 viral posts with 6,611 likes, 235 comments, and 453 shares.
4 image posts, 0 carousel posts, 0 video posts, 0 text posts.

๐Ÿ‘‰ Go deeper on Rami Krispin's LinkedIn with the ContentIn Chrome extension ๐Ÿ‘ˆ

Best Posts by Rami Krispin on LinkedIn

๐๐ž๐ฐ ๐ซ๐ž๐ฅ๐ž๐š๐ฌ๐ž ๐Ÿ๐จ๐ซ ๐”๐›๐ž๐ซ'๐ฌ ๐Ÿ๐จ๐ซ๐ž๐œ๐š๐ฌ๐ญ๐ข๐ง๐  ๐ฅ๐ข๐›๐ซ๐š๐ซ๐ฒ ๐Ÿ“Š๐ŸŒˆ๐Ÿ‘‡๐Ÿผ

๐Ž๐ซ๐›๐ข๐ญ is an open-source Python library for ๐๐š๐ฒ๐ž๐ฌ๐ข๐š๐ง time series forecasting and inference applications developed by Uber Engineering. The library uses under the hood probabilistic programming languages with libraries such asย PyStan,ย Pyro, and PyTorch to build the forecast estimators. The new release, version 1.1 includes the following new features and changes:
โœจ ๐Š๐ž๐ซ๐ง๐ž๐ฅ ๐“๐ข๐ฆ๐ž-๐›๐š๐ฌ๐ž๐ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง (๐Š๐“๐‘) - new forecasting model was added to the library based on a KTR model. KTR model uses latent variables to define a smooth, time-varying representation of regression coefficients. Four tutorials about using KTR were added to the library documentation.
โœจ ๐–๐จ๐ซ๐ค๐Ÿ๐ฅ๐จ๐ฐ - Improve the object-oriented workflow by changing the library's classes, defining three types:
Forecaster
Model Template
Estimator
โœจ ๐’๐ฒ๐ง๐ญ๐š๐ฑ - As a result of the changes in the class structure, some changes made for some of the library functions syntax
โœจ ๐ƒ๐š๐ญ๐š๐ฏ๐ข๐ณ - Updating the model diagnostics tools adding supports for ๐€๐ซ๐•๐ข๐ณ library data visualization functions such as density, pair, and trace plots

๐‹๐ข๐œ๐ž๐ง๐ฌ๐ž: Apache 2.0

๐‘๐ž๐ฌ๐จ๐ฎ๐ซ๐œ๐ž๐ฌ ๐Ÿ‘‡๐Ÿผ๐Ÿ‘‡๐Ÿผ๐Ÿ‘‡๐Ÿผ
Documentation: https://lnkd.in/gj_Ab6_q
Source code: https://lnkd.in/gFWwhFB8
Release blog: https://lnkd.in/g4E8m-EU
Colab notebook: https://lnkd.in/gcZDVcMi

#python #timeseries #forecasting #bayesianstatistics #bayesian #statistics #machinelearning #ml #pytorch #datavisualization #dataviz
Post image by Rami Krispin
Natural Language Processing Course ๐Ÿš€

If you are looking for an NLP course, The University of Texas at Austin offers its master-level NLP course online for free. The course CS388, by Prof Greg Durrett, focuses on the foundations of NLP, and it covers topics such as:
โœ… Intro and Linear Classification
โœ… Multiclass and Neural Classification
โœ… Word Embeddings
โœ… Language Modeling and Self-Attention
โœ… Transformers and Decoding
โœ… Modern Large Language Models
โœ… Machine Translation, Summarization

Resources ๐Ÿ“š
Video lectures ๐Ÿ“ฝ๏ธ: https://lnkd.in/gb7WZv5u
Course website ๐Ÿ”—: https://lnkd.in/gbxG_DHH

#nlp #machinelearning #deeplearning #llm #datascience
Post image by Rami Krispin
๐๐ž๐ฐ ๐ฅ๐ข๐›๐ซ๐š๐ซ๐ฒ ๐Ÿ๐จ๐ซ ๐ฎ๐ฉ๐ฅ๐ข๐Ÿ๐ญ ๐ฆ๐จ๐๐ž๐ฅ๐ข๐ง๐ ! ๐ŸŽŠ๐Ÿ“ˆ๐Ÿš€

Booking.com released ๐”๐ฉ๐ฅ๐ข๐Ÿ๐ญ๐Œ๐‹, a new #python library for scalable unconstrained and constrained uplift modeling from experimental data. The library leverages ๐๐ฒ๐’๐ฉ๐š๐ซ๐ค and ๐‡2๐Ž models as the framework for uplift models.

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐ฎ๐ฉ๐ฅ๐ข๐Ÿ๐ญ ๐ฆ๐จ๐๐ž๐ฅ๐ข๐ง๐ ?
Uplift modelingย is a family of techniques for estimating the Conditional Average Treatment Effect (CATE) from experimental or observational data using machine learning. In particular, we are interested in estimating the causal effect of treatment T on the outcome Y of an individual characterized by features X. In experimental data with binary treatments and binary outcomes, this is equivalent to estimating Pr(Y=1 | T=1, X=x) - Pr(Y=1 | T=0, X=x).

Thanks to the library contributors - Javier Albert and Irene Teinemaa, and to Noa Barbiro and Dima Goldenberg for sharing!๐Ÿ™

๐‹๐ข๐œ๐ž๐ง๐ฌ๐ž: Apache 2
๐ƒ๐จ๐œ๐ฎ๐ฆ๐ž๐ง๐ญ๐š๐ญ๐ข๐จ๐ง: https://lnkd.in/gPYUm3DZ
๐’๐จ๐ฎ๐ซ๐œ๐ž ๐œ๐จ๐๐ž: https://lnkd.in/ghGTMYZV
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž๐ฌ: https://lnkd.in/gdsQDyxB
๐๐จ๐จ๐ค๐ข๐ง๐ .๐œ๐จ๐ฆ ๐๐š๐ญ๐š ๐ฌ๐œ๐ข๐ž๐ง๐œ๐ž ๐›๐ฅ๐จ๐ : https://booking.ai/

#machinelearning #causalinference #experimentation #ml #datascience #datascientist #h2o #pyspark
Post image by Rami Krispin
๐๐ฒ๐Œ๐‚ 4.0 ๐ข๐ฌ ๐Ž๐ฎ๐ญ! ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰

๐๐ฒ๐Œ๐‚ made a major update yesterday and released version 4.0 ๐ŸŒˆ.

PyMC is one of the main ๐๐ฒ๐ญ๐ก๐จ๐ง packages for ๐๐š๐ฒ๐ž๐ฌ๐ข๐š๐ง modeling โค๏ธ. It provides a framework for probabilistic programming enabling users to build Bayesian models with a simple Python API and fit them using ๐Œ๐š๐ซ๐ค๐จ๐ฏ ๐‚๐ก๐š๐ข๐ง ๐Œ๐จ๐ง๐ญ๐ž ๐‚๐š๐ซ๐ฅ๐จ (MCMC) methods ๐Ÿš€.

๐Œ๐š๐ข๐ง ๐ฎ๐ฉ๐๐š๐ญ๐ž๐ฌ:
โœจ Renaming the project from PyMC3 to PyMC
โœจ Replacing Theano with Aesara on the backend
โœจ New JAX backend for faster sampling


๐‘๐ž๐ฌ๐จ๐ฎ๐ซ๐œ๐ž๐ฌ ๐Ÿ“š
Source code: https://lnkd.in/gue4HR25
Documentation: https://lnkd.in/gKj6sYZr
Release notes: https://lnkd.in/gVnf4Ktx

#bayesianstatistics #python #pymc #datascience #machinelearning
Post image by Rami Krispin

Related Influencers