Claim 35 Post Templates from the 7 best LinkedIn Influencers

Get Free Post Templates
Maryam Miradi, PhD

Maryam Miradi, PhD

These are the best posts from Maryam Miradi, PhD.

5 viral posts with 6,536 likes, 19 comments, and 482 shares.
4 image posts, 0 carousel posts, 1 video posts, 0 text posts.

👉 Go deeper on Maryam Miradi, PhD's LinkedIn with the ContentIn Chrome extension 👈

Best Posts by Maryam Miradi, PhD on LinkedIn

𝐀𝐈, đđĄđšđ­đšđ đ«đšđŠđŠđžđ­đ«đČ, 𝐚𝐧𝐝 đƒđ«đšđ§đžđŹ: đ‘đžđŻđšđ„đźđ­đąđšđ§đąđłđąđ§đ  đ’đ­đ«đźđœđ­đźđ«đšđ„ đ€đ§đšđ„đČ𝐬𝐱𝐬

I have done my PhD detecting and quantifying the severity of damage of Asphalt of all main and secondary roads. The added value was hundred of millions of Euros.

One challenge though: data collection which is super expensive and time consuming.

Aren is a civil infrastructure SaaS company has solved this challenge with building a solution incl. 3 steps:

➊ Aggregate raw data from drones, scanners, photos and sensors

➋ High-resolution 3D digital twin of assets is build capturing milimetric details

➌ AI/ML models automatically detects and quantifies the severity of damage.

â„đ•–đ•§đ• đ•đ•Šđ•„đ•šđ• đ•Ÿđ•’đ•Łđ•Ș đ•Šđ• đ•đ•Šđ•„đ•šđ• đ•Ÿ:

The combination of AI, photogrammetry, and drones makes it possible to assess structural conditions, track changes over time, and predict future rehabilitation needs.

â„™đ•™đ• đ•„đ• đ•˜đ•Łđ•’đ•žđ•žđ•–đ•„đ•Łđ•Ș:

It is a technique that extracts accurate measurements from photographs. By analyzing the geometry, scale, and perspective in images, AI algorithms reconstruct three-dimensional models of structures. This enables engineers to assess structural conditions with precision and detail.

â„šđ•Šđ•’đ•Ÿđ•„đ•šđ•„đ•’đ•„đ•šđ•§đ•– đ”žđ•€đ•€đ•–đ•€đ•€đ•žđ•–đ•Ÿđ•„ 𝕒𝕟𝕕 𝕋𝕣𝕒𝕔𝕜𝕚𝕟𝕘:

Through photogrammetry, AI can quantify defects such as cracks and efflorescence, providing proactive maintenance planning and prediction of future rehabilitation needs.

đ”»đ•’đ•„đ•’ â„‚đ• đ•đ•đ•–đ•”đ•„đ•šđ• đ•Ÿ đ•€đ•žđ•Ąđ•Łđ• đ•§đ•–đ•žđ•–đ•Ÿđ•„đ•€:

Accurate and uniform data collection is crucial for reliable photogrammetry results. Drones, such as Skydio enhance data acquisition by capturing high-resolution images, especially in inaccessible areas.

✍ Do you know other applications of this kind?

See source in the comments 👇

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
đ”đ§đ„đžđšđŹđĄđąđ§đ  𝐭𝐡𝐞 đđšđ°đžđ« 𝐹𝐟 đ†đžđšđŹđ©đšđ­đąđšđ„ 𝐃𝐚𝐭𝐚: 𝟐𝟎 𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ đ“đ«đšđ§đŹđŸđšđ«đŠđąđ§đ  𝐋𝐹𝐜𝐚𝐭𝐱𝐹𝐧-𝐁𝐚𝐬𝐞𝐝 đ’đžđ«đŻđąđœđžđŹ & 𝐁𝐞đČ𝐹𝐧𝐝

Geospatial data refers to information that is linked to a specific place on earth, such as geographic coordinates or addresses.

đ”Ÿđ•–đ•  đ••đ•’đ•„đ•’ đ•šđ•€ 𝕩𝕟𝕚𝕱𝕩𝕖 𝕚𝕟:

➊ Location Context
➋ Spatial Relationships
➌ Coordinate System Reference
➍ Visual Representation
➎ Complex Structures
➏ Data Integration

đ•€đ•„đ•€ đ•„đ• đ•€đ•„ đ•€đ•žđ•Ąđ• đ•Łđ•„đ•’đ•Ÿđ•„ đ”œđ•Šđ•Ÿđ•”đ•„đ•šđ• đ•Ÿđ•€:

➊ Geocoding: Converting address to coordinates
➋ Spatial Query: Searching for features like proximity to a point.
➌ Intersection: Finding the overlap between features.
➍ Buffering: Creating a polygon around a point, line or polygon.
➎ Union: Combining polygon features into a single one.
➏ Dissolve: Merging polygon based on a common attribute.
➐ Overlay: Creating a new layer by combining layers.
➑ Raster to Vector Conversion
➒ Distance Measurement: Calculating the feature distance.
➊⓿ Projection Transformation: Changing projection of a layer.


𝕍𝕒𝕝𝕩𝕒𝕓𝕝𝕖 𝕚𝕟 đ•€đ•–đ•§đ•–đ•Łđ•’đ• đ•—đ•šđ•–đ•đ••đ•€:

⌘ Location-based services, like navigation apps.
⌘ Urban planning and land use analysis.
⌘ Environmental monitoring and resource management.
⌘ Crime analysis

â„‚đ•™đ•’đ•đ•đ•–đ•Ÿđ•˜đ•–đ•€ 𝕠𝕗 đ”Ÿđ•–đ• đ•€đ•Ąđ•’đ•„đ•šđ•’đ• đ”»đ•’đ•„đ•’:

➊ Real-time Updates
➋ Accessibility
➌ Data Visualization

𝐈 𝐟𝐹𝐼𝐧𝐝 𝟐𝟎 𝐁𝐞𝐬𝐭 𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ đŸđšđ« đ†đžđšđŹđ©đšđ­đąđšđ„ 𝐃𝐚𝐭𝐚:

📚 Pydeck (⭐ 11K)

WebGL2 powered visualization framework

📚 Folium (⭐ 6.1K)

Interactive maps

📚 Geopy (⭐ 3.9K)

Geocoding & reverse geocoding

📚 Geopandas (⭐ 3.5K)

Geospatial data in a pandas DataFrame

📚 Shapely (⭐ 3.2K)

Geometric operations

📚 Rasterio (⭐ 1.9K)

Reading/writing raster datasets (satellite imagery)

📚 ArcGIS (⭐ 1.5K)

ArcGIS for Python

📚 PySAL (⭐ 1.1K)

Spatial analysis (spatial statistics & econometrics)

📚 Fiona (⭐ 1K)

Reading/writing geo data formats (shapefiles, GeoJSON, GPX)

📚 Pyproj (⭐ 840)

Projections & transformations of geospatial data

📚 NetworkX

Analyzing/modeling network data (spatial networks)

📚 Cartopy

Creating maps and plotting geospatial data

📚 Gdal

Working with various geospatial data formats/projections

📚 Gevent

Asynchronous I/O and network operations for large data sets

📚 RTree

Indexing/querying geospatial data

📚 Descartes

Plotting geospatial data in Matplotlib

📚 PyQGIS

Working with QGIS GIS software from Python

📚 OSMnx

Working with OpenStreetMap data (downloading, analyzing, visualizing)

📚 Geojson

Working with GeoJSON data format

📚 Geohash

Encoding/decoding geo data to ASCII string format.

✍ Have I forgotten any techniques or libraries?

Source in the comments 👇

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python #gis
Post image by Maryam Miradi, PhD
𝐓𝐱𝐩𝐞 đ’đžđ«đąđžđŹ đ€đ§đšđ„đČ𝐬𝐱𝐬 𝐃𝐞𝐩đČ𝐬𝐭𝐱𝐟𝐱𝐞𝐝: đ“đšđ© 𝟐𝟎 𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ đ©đ„đźđŹ 𝐓đČđ©đžđŹ, đ€đ©đ©đ„đąđœđšđ­đąđšđ§đŹ 𝐚𝐧𝐝 𝐅𝐼𝐧𝐜𝐭𝐱𝐹𝐧𝐬

Time-series data is a sequence of data points collected over time intervals, allowing us to track changes over milliseconds, days, or even years.

📊 đ”žđ•Ąđ•Ąđ•đ•šđ•”đ•’đ•„đ•šđ• đ•Ÿđ•€:
- Monitoring software systems: virtual machines, containers, services, applications
- Monitoring physical systems: equipment, machinery, connected devices (IoT), our bodies
- Asset tracking applications: vehicles, trucks, physical containers, pallets
- Financial trading systems: classic securities, newer cryptocurrencies
- Eventing applications: tracking user/customer interaction data
- Business intelligence tools: tracking key metrics and the overall health of the business

📈 𝕋𝕚𝕞𝕖 đ•Šđ•–đ•Łđ•šđ•–đ•€ 𝕋đ•Șđ•Ąđ•–đ•€:
- đ”đ§đąđŻđšđ«đąđšđ­đž Time Series: only one variable is varying over time.
- đŒđźđ„đ­đąđŻđšđ«đąđšđ­đž Time Series: multiple variables are varying over time.

⌛ 𝟙𝟙 đ••đ•šđ•—đ•—đ•–đ•Łđ•–đ•Ÿđ•„ đ•”đ•đ•’đ•€đ•€đ•šđ•”đ•’đ• đ•„đ•šđ•žđ•– đ•€đ•–đ•Łđ•šđ•–đ•€ đ•—đ• đ•Łđ•–đ•”đ•’đ•€đ•„đ•šđ•Ÿđ•˜ đ•žđ•–đ•„đ•™đ• đ••đ•€:
1. Autoregression (AR): đ”đ§đąđŻđšđ«đąđšđ­đž
2. Moving Average (MA): đ”đ§đąđŻđšđ«đąđšđ­đž
3. Autoregressive Moving Average (ARMA): đ”đ§đąđŻđšđ«đąđšđ­đž
4. Autoregressive Integrated Moving Average (ARIMA): đ”đ§đąđŻđšđ«đąđšđ­đž
5. Seasonal Autoregressive Integrated Moving-Average (SARIMA): đ”đ§đąđŻđšđ«đąđšđ­đž
6. Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX): đ”đ§đąđŻđšđ«đąđšđ­đž
7. Simple Exponential Smoothing (SES): đ”đ§đąđŻđšđ«đąđšđ­đž
8. Holt Winter’s Exponential Smoothing (HWES): đ”đ§đąđŻđšđ«đąđšđ­đž
9. Vector Autoregression (VAR): đŒđźđ„đ­đąđŻđšđ«đąđšđ­đž
10. Vector Autoregression Moving-Average (VARMA): đŒđźđ„đ­đąđŻđšđ«đąđšđ­đž
11. Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX): đŒđźđ„đ­đąđŻđšđ«đąđšđ­đž

𝐈 𝐟𝐹𝐼𝐧𝐝 𝐭𝐡𝐞 đŸđšđ„đ„đšđ°đąđ§đ  𝟐𝟎 đ‹đąđ›đ«đšđ«đąđžđŹ for forecasting, anomaly detection, feature extraction, and machine learning 𝐹𝐧 𝐭𝐱𝐩𝐞-đŹđžđ«đąđžđŹ đ«đšđ§đ€đžđ 𝐛𝐚𝐬𝐞𝐝 𝐹𝐧 𝐆𝐱𝐭𝐡𝐼𝐛 đŹđ­đšđ«đŹ and project-quality score.

📚Prophet (đŸ„‡36 · ⭐ 15K )

📚Sktime (đŸ„‡35 · ⭐ 6K)

📚tsfresh (đŸ„‡32 · ⭐ 7K)

📚NeuralProphet (đŸ„‡32 · ⭐ 2.7K)

📚STUMPY (đŸ„‡32 · ⭐ 2.5K)

📚pmdarima (đŸ„‡32 · ⭐ 1.3K)

📚tslearn (đŸ„ˆ31 · ⭐ 2.3K)

📚Darts (đŸ„ˆ30 · ⭐ 5.3K)

📚GluonTS (đŸ„ˆ30 · ⭐ 3.3K)

📚Pytorch-forecasting (đŸ„ˆ29 · ⭐ 2.5K)

📚StatsForecast (đŸ„ˆ28 · ⭐ 2.2K)

📚Streamz (đŸ„ˆ28 · ⭐ 1.1K)

📚Uber/orbit (đŸ„‰26 · ⭐ 1.6K)

📚pyts (đŸ„‰26 · ⭐ 1.4K)

📚NeuralForecast (đŸ„‰24 · ⭐ 1.1K)

📚greykite (đŸ„‰21 · ⭐ 1.7K)

📚TSFEL (đŸ„‰21 · ⭐ 590 · đŸ’€)

📚seglearn (đŸ„‰21 · ⭐ 540)

📚tick (đŸ„‰21 · ⭐ 410)

📚Auto_TS (đŸ„‰18 · ⭐ 520)


✍ Do you know other Time-series libraries or functions?

Source in the comments 👇

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD
đŒđšđŹđ­đžđ«đąđ§đ  đ”đ§đŹđźđ©đžđ«đŻđąđŹđžđ đ€đ§đšđŠđšđ„đČ 𝐃𝐞𝐭𝐞𝐜𝐭𝐱𝐹𝐧: 𝟐𝟎 đ“đšđ© đ€đ„đ đšđ«đąđ­đĄđŠđŹ, đ„đŻđšđ„đźđšđ­đąđšđ§ đŒđžđ­đ«đąđœđŹ 𝐚𝐧𝐝 𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ

𝔾𝕟𝕠𝕞𝕒𝕝đ•Ș đ”»đ•–đ•„đ•–đ•”đ•„đ•šđ• đ•Ÿ:

Unsupervised anomaly detection refers to identifying rare or abnormal instances in data without prior knowledge of what constitutes an anomaly, also called Novelty Detection.

𝔾𝕟𝕠𝕞𝕒𝕝đ•Ș đ”»đ•–đ•„đ•–đ•”đ•„đ•šđ• đ•Ÿ đ”žđ•đ•˜đ• đ•Łđ•šđ•„đ•™đ•žđ•€:

Here are all 20 Anomaly Detection Algorithms I could find and their Python Libraries:

📚 đ’đœđąđ€đąđ­-đ„đžđšđ«đ§

O͜͡ Density-based spatial clustering of applications with noise (DBSCAN)
O͜͡ Isolation Forest
O͜͡ Local Outlier Factor (LOF)
O͜͡ One-Class Support Vector Machines (SVM)
O͜͡ Principal Component Analysis (PCA)
O͜͡ K-means
O͜͡ Gaussian Mixture Model (GMM)

📚 đŠđžđ«đšđŹ/đ“đžđ§đŹđšđ«đ…đ„đšđ°

O͜͡ Autoencoder

📚 đ‡đŠđŠđ„đžđšđ«đ§

O͜͡ Hidden Markov Models (HMM)

📚 𝐏đČ𝐎𝐃

O͜͡ Local Correlation Integral (LCI)
O͜͡ Histogram-based Outlier Detection (HBOS)
O͜͡ Angle-based Outlier Detection (ABOD)
O͜͡ Clustering-Based Local Outlier Factor (CBLOF)
O͜͡ Minimum Covariance Determinant (MCD)
O͜͡ Stochastic Outlier Selection (SOS)
O͜͡ Spectral Clustering for Anomaly Detection (SpectralResidual)
O͜͡ Feature Bagging
O͜͡ Average KNN
O͜͡ Connectivity-based Outlier Factor (COF)
O͜͡ Variational Autoencoder (VAE)

𝐁𝐼𝐭 𝐡𝐹𝐰 𝐝𝐹 𝐰𝐞 đ€đ§đšđ° 𝐰𝐡𝐱𝐜𝐡 𝐩𝐞𝐭𝐡𝐹𝐝 𝐱𝐬 đ›đžđ­đ­đžđ«? 𝐖𝐞 𝐝𝐹𝐧’𝐭 𝐡𝐚𝐯𝐞 đ„đšđ›đžđ„đŹ 𝐱𝐧 đ”đ§đŹđźđ©đžđ«đŻđąđŹđžđ đ‹đžđšđ«đ§đąđ§đ , 𝐍𝐹 đ đ«đšđźđ§đ đ­đ«đźđ­đĄ.

The answer lies in using evaluation metrics that can help us determine the quality of our algorithm.

đ”Œđ•§đ•’đ•đ•Šđ•’đ•„đ•šđ• đ•Ÿ đ•„đ•–đ•„đ•™đ• đ••đ•€:

➊ Silhouette score:

A high Silhouette score (close to 1) indicates that data points within clusters are similar, and that the normal data points are well separated from the anomalous ones.

➋ Calinski-Harabasz index:

Calinski-Harabasz Index measures the between-cluster dispersion against within-cluster dispersion. A higher score signifies better-defined clusters.

➌ Davies-Bouldin index:

Davies-Bouldin Index measures the size of clusters against the average distance between clusters. A lower score signifies better-defined clusters.

➍ Kolmogorov-Smirnov statistic:

It measures the maximum difference between the cumulative distribution functions of the normal and anomalous data points.

➎ Precision at top-k:

The metric calculates the precision of the top-k anomalous data points using expert domain knowledge.

Don't leave your unsupervised anomaly detection to chance because there are no labels.

See the links to Papers and Tutorials 👇

✍ Do you know any other evaluation methods for Unsupervised Anomaly Detection?

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD
đ”đ§đ„đšđœđ€ 𝐭𝐡𝐞 đđšđ°đžđ« 𝐹𝐟 đđ«đžđ­đ«đšđąđ§đžđ đŒđšđđžđ„đŹ: 𝟐𝟎 đ“đšđ© 𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ 𝐚𝐧𝐝 𝐚 đƒđžđžđ© 𝐃𝐱𝐯𝐞 𝐱𝐧𝐭𝐹 đ“đ«đšđ§đŹđŸđžđ« đ‹đžđšđ«đ§đąđ§đ 

Transfer learning is a powerful technique that allows us to reuse pre-trained models to solve new problems efficiently.

đ•‹đ•Łđ•’đ•Ÿđ•€đ•—đ•–đ•Ł 𝕃𝕖𝕒𝕣𝕟𝕚𝕟𝕘 đ•Šđ•„đ•–đ•Ąđ•€:

➊ Select a pre-trained model.
➋ Remove the last layer(s) of the model.
➌ Add new layer(s) to the model.
➍ Train the model on the new dataset.
➎ Fine-tune the model (optional)

đ•‹đ•Łđ•’đ•Ÿđ•€đ•—đ•–đ•Ł 𝕃𝕖𝕒𝕣𝕟𝕚𝕟𝕘 𝕋đ•Șđ•Ąđ•–đ•€:

𝐈𝐧𝐝𝐼𝐜𝐭𝐱𝐯𝐞 đ­đ«đšđ§đŹđŸđžđ« đ„đžđšđ«đ§đąđ§đ : Using a pre-trained model to solve a similar task to the original task.

🅞 Instance Transfer
🅞 Feature Representation Transfer
🅞 Parameter Transfer

đ“đ«đšđ§đŹđđźđœđ­đąđŻđž đ­đ«đšđ§đŹđŸđžđ« đ„đžđšđ«đ§đąđ§đ : Using a pre-trained model to solve the same task as the original task, but with different data distributions.

🅞 Domain Adaptation
🅞 Semi-Supervised

đ”đ§đŹđźđ©đžđ«đŻđąđŹđžđ đ­đ«đšđ§đŹđŸđžđ« đ„đžđšđ«đ§đąđ§đ : Using a pre-trained model to extract useful features from the data without any labeled data.

🅞 Self-Taught Learning
🅞 Deep Generative

đ•€đ•Ÿđ••đ•Šđ•”đ•„đ•šđ•§đ•– đ•‹đ•Łđ•’đ•Ÿđ•€đ•—đ•–đ•Ł 𝕃𝕖𝕒𝕣𝕟𝕚𝕟𝕘 đ”žđ•đ•˜đ• đ•Łđ•šđ•„đ•™đ•žđ•€:

àč Convolutional Neural Networks (CNNs):
- VGG16
- ResNet
- Inception

àč Recurrent Neural Networks (RNNs):
- LSTM
- GRU

àč Language Models:
- BERT
- GPT

àč Autoencoder-based Models:
- Variational Autoencoder (VAE),
- Generative Adversarial Networks (GANs)

àč Ensemble-based Models:
- Stacking
- Bagging

đ•‹đ•Łđ•’đ•Ÿđ•€đ••đ•Šđ•”đ•„đ•šđ•§đ•– đ•‹đ•Łđ•’đ•Ÿđ•€đ•—đ•–đ•Ł 𝕃𝕖𝕒𝕣𝕟𝕚𝕟𝕘 đ”žđ•đ•˜đ• đ•Łđ•šđ•„đ•™đ•žđ•€:

àč Domain Adaptation:
- Adversarial Discriminative Domain Adaptation (ADDA)
- Domain-Adversarial Neural Networks (DANN)

àč Multi-task Learning:
- DeepFM
- Wide and Deep

àč Self-taught Learning:
- Sparse Autoencoder
- Deep Belief Network (DBN)

àč Cross-lingual Transfer Learning:
- Bilingual Distributed Representations (Bi-DRL)
- Language Model Pretraining (LMP)

àč Few-shot Learning:
- Prototypical Networks
- Matching Networks

đ•Œđ•Ÿđ•€đ•Šđ•Ąđ•–đ•Łđ•§đ•šđ•€đ•–đ•• đ•‹đ•Łđ•’đ•Ÿđ•€đ•—đ•–đ•Ł 𝕃𝕖𝕒𝕣𝕟𝕚𝕟𝕘 đ”žđ•đ•˜đ• đ•Łđ•šđ•„đ•™đ•žđ•€:

àč Language Models:
- BERT
- GPT

àč Vision Models:
- ResNet
- VGG

àč Audio Models:
- WaveNet
- MelNet

àč Graph Models:
- Graph Convolutional Networks (GCNs)
- Graph Autoencoder

àč Reinforcement Learning Models:
- Proximal Policy Optimization (PPO)
- Deep Q-Networks (DQNs)

𝐏đČ𝐭𝐡𝐹𝐧 đ‹đąđ›đ«đšđ«đąđžđŹ đŸđšđ« đ“đ«đšđ§đŹđŸđžđ« đ‹đžđšđ«đ§đąđ§đ :

📚TensorFlow
📚Keras
📚PyTorch
📚 Scikit-learn
📚 FastAI
📚 MXNet
📚 Caffe
📚 Theano
📚 Hugging Face Transformers
📚 OpenCV
📚 TFLearn
📚 Torchvision
📚 TensorFlow Hub
📚 TensorBoard
📚 TensorFlow Serving
📚 AllenNLP
📚 GluonCV
📚 PyCaret
📚 TensorFlow Probability
📚 PyTorch Lightning

See the links👇

✍ Have I forgotten any libraries or algorithms?

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD

Related Influencers