Claim 35 Post Templates from the 7 best LinkedIn Influencers

Get Free Post Templates
Maryam Miradi, PhD

Maryam Miradi, PhD

These are the best posts from Maryam Miradi, PhD.

5 viral posts with 6,536 likes, 19 comments, and 482 shares.
4 image posts, 0 carousel posts, 1 video posts, 0 text posts.

๐Ÿ‘‰ Go deeper on Maryam Miradi, PhD's LinkedIn with the ContentIn Chrome extension ๐Ÿ‘ˆ

Best Posts by Maryam Miradi, PhD on LinkedIn

๐€๐ˆ, ๐๐ก๐จ๐ญ๐จ๐ ๐ซ๐š๐ฆ๐ฆ๐ž๐ญ๐ซ๐ฒ, ๐š๐ง๐ ๐ƒ๐ซ๐จ๐ง๐ž๐ฌ: ๐‘๐ž๐ฏ๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ข๐ณ๐ข๐ง๐  ๐’๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐š๐ฅ ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ

I have done my PhD detecting and quantifying the severity of damage of Asphalt of all main and secondary roads. The added value was hundred of millions of Euros.

One challenge though: data collection which is super expensive and time consuming.

Aren is a civil infrastructure SaaS company has solved this challenge with building a solution incl. 3 steps:

โžŠ Aggregate raw data from drones, scanners, photos and sensors

โž‹ High-resolution 3D digital twin of assets is build capturing milimetric details

โžŒ AI/ML models automatically detects and quantifies the severity of damage.

โ„๐•–๐•ง๐• ๐•๐•ฆ๐•ฅ๐•š๐• ๐•Ÿ๐•’๐•ฃ๐•ช ๐•Š๐• ๐•๐•ฆ๐•ฅ๐•š๐• ๐•Ÿ:

The combination of AI, photogrammetry, and drones makes it possible to assess structural conditions, track changes over time, and predict future rehabilitation needs.

โ„™๐•™๐• ๐•ฅ๐• ๐•˜๐•ฃ๐•’๐•ž๐•ž๐•–๐•ฅ๐•ฃ๐•ช:

It is a technique that extracts accurate measurements from photographs. By analyzing the geometry, scale, and perspective in images, AI algorithms reconstruct three-dimensional models of structures. This enables engineers to assess structural conditions with precision and detail.

โ„š๐•ฆ๐•’๐•Ÿ๐•ฅ๐•š๐•ฅ๐•’๐•ฅ๐•š๐•ง๐•– ๐”ธ๐•ค๐•ค๐•–๐•ค๐•ค๐•ž๐•–๐•Ÿ๐•ฅ ๐•’๐•Ÿ๐•• ๐•‹๐•ฃ๐•’๐•”๐•œ๐•š๐•Ÿ๐•˜:

Through photogrammetry, AI can quantify defects such as cracks and efflorescence, providing proactive maintenance planning and prediction of future rehabilitation needs.

๐”ป๐•’๐•ฅ๐•’ โ„‚๐• ๐•๐•๐•–๐•”๐•ฅ๐•š๐• ๐•Ÿ ๐•€๐•ž๐•ก๐•ฃ๐• ๐•ง๐•–๐•ž๐•–๐•Ÿ๐•ฅ๐•ค:

Accurate and uniform data collection is crucial for reliable photogrammetry results. Drones, such as Skydio enhance data acquisition by capturing high-resolution images, especially in inaccessible areas.

โœ๏ธ Do you know other applications of this kind?

See source in the comments ๐Ÿ‘‡

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
๐”๐ง๐ฅ๐ž๐š๐ฌ๐ก๐ข๐ง๐  ๐ญ๐ก๐ž ๐๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ ๐†๐ž๐จ๐ฌ๐ฉ๐š๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š: ๐Ÿ๐ŸŽ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ข๐ง๐  ๐‹๐จ๐œ๐š๐ญ๐ข๐จ๐ง-๐๐š๐ฌ๐ž๐ ๐’๐ž๐ซ๐ฏ๐ข๐œ๐ž๐ฌ & ๐๐ž๐ฒ๐จ๐ง๐

Geospatial data refers to information that is linked to a specific place on earth, such as geographic coordinates or addresses.

๐”พ๐•–๐•  ๐••๐•’๐•ฅ๐•’ ๐•š๐•ค ๐•ฆ๐•Ÿ๐•š๐•ข๐•ฆ๐•– ๐•š๐•Ÿ:

โžŠ Location Context
โž‹ Spatial Relationships
โžŒ Coordinate System Reference
โž Visual Representation
โžŽ Complex Structures
โž Data Integration

๐•€๐•ฅ๐•ค ๐•„๐• ๐•ค๐•ฅ ๐•€๐•ž๐•ก๐• ๐•ฃ๐•ฅ๐•’๐•Ÿ๐•ฅ ๐”ฝ๐•ฆ๐•Ÿ๐•”๐•ฅ๐•š๐• ๐•Ÿ๐•ค:

โžŠ Geocoding: Converting address to coordinates
โž‹ Spatial Query: Searching for features like proximity to a point.
โžŒ Intersection: Finding the overlap between features.
โž Buffering: Creating a polygon around a point, line or polygon.
โžŽ Union: Combining polygon features into a single one.
โž Dissolve: Merging polygon based on a common attribute.
โž Overlay: Creating a new layer by combining layers.
โž‘ Raster to Vector Conversion
โž’ Distance Measurement: Calculating the feature distance.
โžŠโ“ฟ Projection Transformation: Changing projection of a layer.


๐•๐•’๐•๐•ฆ๐•’๐•“๐•๐•– ๐•š๐•Ÿ ๐•ค๐•–๐•ง๐•–๐•ฃ๐•’๐• ๐•—๐•š๐•–๐•๐••๐•ค:

โŒ˜ Location-based services, like navigation apps.
โŒ˜ Urban planning and land use analysis.
โŒ˜ Environmental monitoring and resource management.
โŒ˜ Crime analysis

โ„‚๐•™๐•’๐•๐•๐•–๐•Ÿ๐•˜๐•–๐•ค ๐• ๐•— ๐”พ๐•–๐• ๐•ค๐•ก๐•’๐•ฅ๐•š๐•’๐• ๐”ป๐•’๐•ฅ๐•’:

โžŠ Real-time Updates
โž‹ Accessibility
โžŒ Data Visualization

๐ˆ ๐Ÿ๐จ๐ฎ๐ง๐ ๐Ÿ๐ŸŽ ๐๐ž๐ฌ๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ ๐Ÿ๐จ๐ซ ๐†๐ž๐จ๐ฌ๐ฉ๐š๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š:

๐Ÿ“š Pydeck (โญ 11K)

WebGL2 powered visualization framework

๐Ÿ“š Folium (โญ 6.1K)

Interactive maps

๐Ÿ“š Geopy (โญ 3.9K)

Geocoding & reverse geocoding

๐Ÿ“š Geopandas (โญ 3.5K)

Geospatial data in a pandas DataFrame

๐Ÿ“š Shapely (โญ 3.2K)

Geometric operations

๐Ÿ“š Rasterio (โญ 1.9K)

Reading/writing raster datasets (satellite imagery)

๐Ÿ“š ArcGIS (โญ 1.5K)

ArcGIS for Python

๐Ÿ“š PySAL (โญ 1.1K)

Spatial analysis (spatial statistics & econometrics)

๐Ÿ“š Fiona (โญ 1K)

Reading/writing geo data formats (shapefiles, GeoJSON, GPX)

๐Ÿ“š Pyproj (โญ 840)

Projections & transformations of geospatial data

๐Ÿ“š NetworkX

Analyzing/modeling network data (spatial networks)

๐Ÿ“š Cartopy

Creating maps and plotting geospatial data

๐Ÿ“š Gdal

Working with various geospatial data formats/projections

๐Ÿ“š Gevent

Asynchronous I/O and network operations for large data sets

๐Ÿ“š RTree

Indexing/querying geospatial data

๐Ÿ“š Descartes

Plotting geospatial data in Matplotlib

๐Ÿ“š PyQGIS

Working with QGIS GIS software from Python

๐Ÿ“š OSMnx

Working with OpenStreetMap data (downloading, analyzing, visualizing)

๐Ÿ“š Geojson

Working with GeoJSON data format

๐Ÿ“š Geohash

Encoding/decoding geo data to ASCII string format.

โœ๏ธ Have I forgotten any techniques or libraries?

Source in the comments ๐Ÿ‘‡

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python #gis
Post image by Maryam Miradi, PhD
๐“๐ข๐ฆ๐ž ๐’๐ž๐ซ๐ข๐ž๐ฌ ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ ๐ƒ๐ž๐ฆ๐ฒ๐ฌ๐ญ๐ข๐Ÿ๐ข๐ž๐: ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ ๐ฉ๐ฅ๐ฎ๐ฌ ๐“๐ฒ๐ฉ๐ž๐ฌ, ๐€๐ฉ๐ฉ๐ฅ๐ข๐œ๐š๐ญ๐ข๐จ๐ง๐ฌ ๐š๐ง๐ ๐…๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง๐ฌ

Time-series data is a sequence of data points collected over time intervals, allowing us to track changes over milliseconds, days, or even years.

๐Ÿ“Š ๐”ธ๐•ก๐•ก๐•๐•š๐•”๐•’๐•ฅ๐•š๐• ๐•Ÿ๐•ค:
- Monitoring software systems: virtual machines, containers, services, applications
- Monitoring physical systems: equipment, machinery, connected devices (IoT), our bodies
- Asset tracking applications: vehicles, trucks, physical containers, pallets
- Financial trading systems: classic securities, newer cryptocurrencies
- Eventing applications: tracking user/customer interaction data
- Business intelligence tools: tracking key metrics and the overall health of the business

๐Ÿ“ˆ ๐•‹๐•š๐•ž๐•– ๐•Š๐•–๐•ฃ๐•š๐•–๐•ค ๐•‹๐•ช๐•ก๐•–๐•ค:
- ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž Time Series: only one variable is varying over time.
- ๐Œ๐ฎ๐ฅ๐ญ๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž Time Series: multiple variables are varying over time.

โŒ›๏ธ ๐Ÿ™๐Ÿ™ ๐••๐•š๐•—๐•—๐•–๐•ฃ๐•–๐•Ÿ๐•ฅ ๐•”๐•๐•’๐•ค๐•ค๐•š๐•”๐•’๐• ๐•ฅ๐•š๐•ž๐•– ๐•ค๐•–๐•ฃ๐•š๐•–๐•ค ๐•—๐• ๐•ฃ๐•–๐•”๐•’๐•ค๐•ฅ๐•š๐•Ÿ๐•˜ ๐•ž๐•–๐•ฅ๐•™๐• ๐••๐•ค:
1. Autoregression (AR): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
2. Moving Average (MA): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
3. Autoregressive Moving Average (ARMA): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
4. Autoregressive Integrated Moving Average (ARIMA): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
5. Seasonal Autoregressive Integrated Moving-Average (SARIMA): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
6. Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
7. Simple Exponential Smoothing (SES): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
8. Holt Winterโ€™s Exponential Smoothing (HWES): ๐”๐ง๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
9. Vector Autoregression (VAR): ๐Œ๐ฎ๐ฅ๐ญ๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
10. Vector Autoregression Moving-Average (VARMA): ๐Œ๐ฎ๐ฅ๐ญ๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž
11. Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX): ๐Œ๐ฎ๐ฅ๐ญ๐ข๐ฏ๐š๐ซ๐ข๐š๐ญ๐ž

๐ˆ ๐Ÿ๐จ๐ฎ๐ง๐ ๐ญ๐ก๐ž ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ๐ข๐ง๐  ๐Ÿ๐ŸŽ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ for forecasting, anomaly detection, feature extraction, and machine learning ๐จ๐ง ๐ญ๐ข๐ฆ๐ž-๐ฌ๐ž๐ซ๐ข๐ž๐ฌ ๐ซ๐š๐ง๐ค๐ž๐ ๐›๐š๐ฌ๐ž๐ ๐จ๐ง ๐†๐ข๐ญ๐ก๐ฎ๐› ๐ฌ๐ญ๐š๐ซ๐ฌ and project-quality score.

๐Ÿ“šProphet (๐Ÿฅ‡36 ยท โญ 15K )

๐Ÿ“šSktime (๐Ÿฅ‡35 ยท โญ 6K)

๐Ÿ“štsfresh (๐Ÿฅ‡32 ยท โญ 7K)

๐Ÿ“šNeuralProphet (๐Ÿฅ‡32 ยท โญ 2.7K)

๐Ÿ“šSTUMPY (๐Ÿฅ‡32 ยท โญ 2.5K)

๐Ÿ“špmdarima (๐Ÿฅ‡32 ยท โญ 1.3K)

๐Ÿ“štslearn (๐Ÿฅˆ31 ยท โญ 2.3K)

๐Ÿ“šDarts (๐Ÿฅˆ30 ยท โญ 5.3K)

๐Ÿ“šGluonTS (๐Ÿฅˆ30 ยท โญ 3.3K)

๐Ÿ“šPytorch-forecasting (๐Ÿฅˆ29 ยท โญ 2.5K)

๐Ÿ“šStatsForecast (๐Ÿฅˆ28 ยท โญ 2.2K)

๐Ÿ“šStreamz (๐Ÿฅˆ28 ยท โญ 1.1K)

๐Ÿ“šUber/orbit (๐Ÿฅ‰26 ยท โญ 1.6K)

๐Ÿ“špyts (๐Ÿฅ‰26 ยท โญ 1.4K)

๐Ÿ“šNeuralForecast (๐Ÿฅ‰24 ยท โญ 1.1K)

๐Ÿ“šgreykite (๐Ÿฅ‰21 ยท โญ 1.7K)

๐Ÿ“šTSFEL (๐Ÿฅ‰21 ยท โญ 590 ยท ๐Ÿ’ค)

๐Ÿ“šseglearn (๐Ÿฅ‰21 ยท โญ 540)

๐Ÿ“štick (๐Ÿฅ‰21 ยท โญ 410)

๐Ÿ“šAuto_TS (๐Ÿฅ‰18 ยท โญ 520)


โœ๏ธ Do you know other Time-series libraries or functions?

Source in the comments ๐Ÿ‘‡

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD
๐Œ๐š๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐€๐ง๐จ๐ฆ๐š๐ฅ๐ฒ ๐ƒ๐ž๐ญ๐ž๐œ๐ญ๐ข๐จ๐ง: ๐Ÿ๐ŸŽ ๐“๐จ๐ฉ ๐€๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ, ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ข๐จ๐ง ๐Œ๐ž๐ญ๐ซ๐ข๐œ๐ฌ ๐š๐ง๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ

๐”ธ๐•Ÿ๐• ๐•ž๐•’๐•๐•ช ๐”ป๐•–๐•ฅ๐•–๐•”๐•ฅ๐•š๐• ๐•Ÿ:

Unsupervised anomaly detection refers to identifying rare or abnormal instances in data without prior knowledge of what constitutes an anomaly, also called Novelty Detection.

๐”ธ๐•Ÿ๐• ๐•ž๐•’๐•๐•ช ๐”ป๐•–๐•ฅ๐•–๐•”๐•ฅ๐•š๐• ๐•Ÿ ๐”ธ๐•๐•˜๐• ๐•ฃ๐•š๐•ฅ๐•™๐•ž๐•ค:

Here are all 20 Anomaly Detection Algorithms I could find and their Python Libraries:

๐Ÿ“š ๐’๐œ๐ข๐ค๐ข๐ญ-๐ฅ๐ž๐š๐ซ๐ง

Oอกอœ Density-based spatial clustering of applications with noise (DBSCAN)
Oอกอœ Isolation Forest
Oอกอœ Local Outlier Factor (LOF)
Oอกอœ One-Class Support Vector Machines (SVM)
Oอกอœ Principal Component Analysis (PCA)
Oอกอœ K-means
Oอกอœ Gaussian Mixture Model (GMM)

๐Ÿ“š ๐Š๐ž๐ซ๐š๐ฌ/๐“๐ž๐ง๐ฌ๐จ๐ซ๐…๐ฅ๐จ๐ฐ

Oอกอœ Autoencoder

๐Ÿ“š ๐‡๐ฆ๐ฆ๐ฅ๐ž๐š๐ซ๐ง

Oอกอœ Hidden Markov Models (HMM)

๐Ÿ“š ๐๐ฒ๐Ž๐ƒ

Oอกอœ Local Correlation Integral (LCI)
Oอกอœ Histogram-based Outlier Detection (HBOS)
Oอกอœ Angle-based Outlier Detection (ABOD)
Oอกอœ Clustering-Based Local Outlier Factor (CBLOF)
Oอกอœ Minimum Covariance Determinant (MCD)
Oอกอœ Stochastic Outlier Selection (SOS)
Oอกอœ Spectral Clustering for Anomaly Detection (SpectralResidual)
Oอกอœ Feature Bagging
Oอกอœ Average KNN
Oอกอœ Connectivity-based Outlier Factor (COF)
Oอกอœ Variational Autoencoder (VAE)

๐๐ฎ๐ญ ๐ก๐จ๐ฐ ๐๐จ ๐ฐ๐ž ๐ค๐ง๐จ๐ฐ ๐ฐ๐ก๐ข๐œ๐ก ๐ฆ๐ž๐ญ๐ก๐จ๐ ๐ข๐ฌ ๐›๐ž๐ญ๐ญ๐ž๐ซ? ๐–๐ž ๐๐จ๐งโ€™๐ญ ๐ก๐š๐ฏ๐ž ๐ฅ๐š๐›๐ž๐ฅ๐ฌ ๐ข๐ง ๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ , ๐๐จ ๐ ๐ซ๐จ๐ฎ๐ง๐ ๐ญ๐ซ๐ฎ๐ญ๐ก.

The answer lies in using evaluation metrics that can help us determine the quality of our algorithm.

๐”ผ๐•ง๐•’๐•๐•ฆ๐•’๐•ฅ๐•š๐• ๐•Ÿ ๐•„๐•–๐•ฅ๐•™๐• ๐••๐•ค:

โžŠ Silhouette score:

A high Silhouette score (close to 1) indicates that data points within clusters are similar, and that the normal data points are well separated from the anomalous ones.

โž‹ Calinski-Harabasz index:

Calinski-Harabasz Index measures the between-cluster dispersion against within-cluster dispersion. A higher score signifies better-defined clusters.

โžŒ Davies-Bouldin index:

Davies-Bouldin Index measures the size of clusters against the average distance between clusters. A lower score signifies better-defined clusters.

โž Kolmogorov-Smirnov statistic:

It measures the maximum difference between the cumulative distribution functions of the normal and anomalous data points.

โžŽ Precision at top-k:

The metric calculates the precision of the top-k anomalous data points using expert domain knowledge.

Don't leave your unsupervised anomaly detection to chance because there are no labels.

See the links to Papers and Tutorials ๐Ÿ‘‡

โœ๏ธ Do you know any other evaluation methods for Unsupervised Anomaly Detection?

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD
๐”๐ง๐ฅ๐จ๐œ๐ค ๐ญ๐ก๐ž ๐๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ ๐๐ซ๐ž๐ญ๐ซ๐š๐ข๐ง๐ž๐ ๐Œ๐จ๐๐ž๐ฅ๐ฌ: ๐Ÿ๐ŸŽ ๐“๐จ๐ฉ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ ๐š๐ง๐ ๐š ๐ƒ๐ž๐ž๐ฉ ๐ƒ๐ข๐ฏ๐ž ๐ข๐ง๐ญ๐จ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐ž๐ซ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 

Transfer learning is a powerful technique that allows us to reuse pre-trained models to solve new problems efficiently.

๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐•—๐•–๐•ฃ ๐•ƒ๐•–๐•’๐•ฃ๐•Ÿ๐•š๐•Ÿ๐•˜ ๐•Š๐•ฅ๐•–๐•ก๐•ค:

โžŠ Select a pre-trained model.
โž‹ Remove the last layer(s) of the model.
โžŒ Add new layer(s) to the model.
โž Train the model on the new dataset.
โžŽ Fine-tune the model (optional)

๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐•—๐•–๐•ฃ ๐•ƒ๐•–๐•’๐•ฃ๐•Ÿ๐•š๐•Ÿ๐•˜ ๐•‹๐•ช๐•ก๐•–๐•ค:

๐ˆ๐ง๐๐ฎ๐œ๐ญ๐ข๐ฏ๐ž ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐ž๐ซ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐ : Using a pre-trained model to solve a similar task to the original task.

๐Ÿ…ž Instance Transfer
๐Ÿ…ž Feature Representation Transfer
๐Ÿ…ž Parameter Transfer

๐“๐ซ๐š๐ง๐ฌ๐๐ฎ๐œ๐ญ๐ข๐ฏ๐ž ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐ž๐ซ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐ : Using a pre-trained model to solve the same task as the original task, but with different data distributions.

๐Ÿ…ž Domain Adaptation
๐Ÿ…ž Semi-Supervised

๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐ž๐ซ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐ : Using a pre-trained model to extract useful features from the data without any labeled data.

๐Ÿ…ž Self-Taught Learning
๐Ÿ…ž Deep Generative

๐•€๐•Ÿ๐••๐•ฆ๐•”๐•ฅ๐•š๐•ง๐•– ๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐•—๐•–๐•ฃ ๐•ƒ๐•–๐•’๐•ฃ๐•Ÿ๐•š๐•Ÿ๐•˜ ๐”ธ๐•๐•˜๐• ๐•ฃ๐•š๐•ฅ๐•™๐•ž๐•ค:

เน Convolutional Neural Networks (CNNs):
- VGG16
- ResNet
- Inception

เน Recurrent Neural Networks (RNNs):
- LSTM
- GRU

เน Language Models:
- BERT
- GPT

เน Autoencoder-based Models:
- Variational Autoencoder (VAE),
- Generative Adversarial Networks (GANs)

เน Ensemble-based Models:
- Stacking
- Bagging

๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐••๐•ฆ๐•”๐•ฅ๐•š๐•ง๐•– ๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐•—๐•–๐•ฃ ๐•ƒ๐•–๐•’๐•ฃ๐•Ÿ๐•š๐•Ÿ๐•˜ ๐”ธ๐•๐•˜๐• ๐•ฃ๐•š๐•ฅ๐•™๐•ž๐•ค:

เน Domain Adaptation:
- Adversarial Discriminative Domain Adaptation (ADDA)
- Domain-Adversarial Neural Networks (DANN)

เน Multi-task Learning:
- DeepFM
- Wide and Deep

เน Self-taught Learning:
- Sparse Autoencoder
- Deep Belief Network (DBN)

เน Cross-lingual Transfer Learning:
- Bilingual Distributed Representations (Bi-DRL)
- Language Model Pretraining (LMP)

เน Few-shot Learning:
- Prototypical Networks
- Matching Networks

๐•Œ๐•Ÿ๐•ค๐•ฆ๐•ก๐•–๐•ฃ๐•ง๐•š๐•ค๐•–๐•• ๐•‹๐•ฃ๐•’๐•Ÿ๐•ค๐•—๐•–๐•ฃ ๐•ƒ๐•–๐•’๐•ฃ๐•Ÿ๐•š๐•Ÿ๐•˜ ๐”ธ๐•๐•˜๐• ๐•ฃ๐•š๐•ฅ๐•™๐•ž๐•ค:

เน Language Models:
- BERT
- GPT

เน Vision Models:
- ResNet
- VGG

เน Audio Models:
- WaveNet
- MelNet

เน Graph Models:
- Graph Convolutional Networks (GCNs)
- Graph Autoencoder

เน Reinforcement Learning Models:
- Proximal Policy Optimization (PPO)
- Deep Q-Networks (DQNs)

๐๐ฒ๐ญ๐ก๐จ๐ง ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ ๐Ÿ๐จ๐ซ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐ž๐ซ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ :

๐Ÿ“šTensorFlow
๐Ÿ“šKeras
๐Ÿ“šPyTorch
๐Ÿ“š Scikit-learn
๐Ÿ“š FastAI
๐Ÿ“š MXNet
๐Ÿ“š Caffe
๐Ÿ“š Theano
๐Ÿ“š Hugging Face Transformers
๐Ÿ“š OpenCV
๐Ÿ“š TFLearn
๐Ÿ“š Torchvision
๐Ÿ“š TensorFlow Hub
๐Ÿ“š TensorBoard
๐Ÿ“š TensorFlow Serving
๐Ÿ“š AllenNLP
๐Ÿ“š GluonCV
๐Ÿ“š PyCaret
๐Ÿ“š TensorFlow Probability
๐Ÿ“š PyTorch Lightning

See the links๐Ÿ‘‡

โœ๏ธ Have I forgotten any libraries or algorithms?

#machinelearning #artificialintelligence #ai #deeplearning #datascience #analytics #dataanalytics #ml #python
Post image by Maryam Miradi, PhD

Related Influencers